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Abstract. We study community structure of networks. We have developed a scheme for maximizing the
modularity Q [1] based on mean field methods. Further, we have defined a simple family of random
networks with community structure; we understand the behavior of these networks analytically. Using
these networks, we show how the mean field methods display better performance than previously known
deterministic methods for optimization of Q.

PACS. 89.75.Hc Networks and genealogical trees – 05.10.-a Computational methods in statistical physics
and nonlinear dynamics

1 Introduction

A theoretical foundation for understanding complex net-
works has developed rapidly over the course of the past
few years [2–4]. More recently, the subject of detecting
network communities has gained an large amount of at-
tention, for reviews see references [5,6]. Community struc-
ture describes the property of many networks that nodes
divide into modules with dense connections between the
members of each module and sparser connections between
modules.

In spite of a tremendous research effort, the mathe-
matical tools developed to describe the structure of large
complex networks are continuously being refined and re-
defined. Essential features related to network structure
and topology are not necessarily captured by traditional
global features such as the average degree, degree distri-
bution, average path length, clustering coefficient, etc. In
order to understand complex networks, we need to de-
velop new measures that capture these structural proper-
ties. Understanding community structures is an important
step towards developing a range of tools that can provide
a deeper and more systematic understanding of complex
networks. One important reason is that modules in net-
works can show quite heterogenic behavior [7], that is,
the link structure of modules can vary significantly from
module to module. For such heterogenic systems, global
measures can be directly misleading. Also, in practical ap-
plications of network theory, knowledge of the community
structure of a given network is important. Access to the
modular structure of the internet could help search en-
gines supply more relevant responses to queries on terms
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that belong to several distinct communities1. In biological
networks, modules can correspond to functional units of
some biological system [8].

2 The modularity

Identifying communities in a graph has a long history
in mathematics and computer science [9,5]. One obvious
way to partition a graph into C communities is distribute
nodes into the communities, such that the number of links
connecting the different modules of the network is mini-
mized. The minimal number of connecting links is called
the cut size R of the network.

Consider an unweighted and undirected graph with n
nodes and m links. This network can be represented by
an adjacency matrix A with elements

Aij =
{

1, if there is a link joining nodes i and j;
0 otherwise. (1)

This matrix is symmetric with 2m entries. The degree ki

of node i is given by ki =
∑

j Aij . Let us express the
cut-size in terms of A; we find that

R =
1
2

∑
i,j

Aij [1 − δ(ci, cj)], (2)

where ci is the community to which node i belongs and
δ(α, β) = 1 if α = β and δ(α, β) = 0 if α �= β. Minimizing

1 Some search engines have begun implementing re-
lated ideas, see for example Clusty, the Clustering Engine
(http://clusty.com/). There is, however, still considerable
room for improvement.
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R is an integer programming problem that can be solved
exactly in polynomial time [10]. The leading order of the
polynomial, however, is nC2

which very expensive for even
very small networks. Due to this fact, much work in graph
partitioning has been based on spectral methods (more
below).

Newman has argued [5,11,7] that R is not the right
quantity to minimize in the context of complex networks.
There are several reasons for this: First of all, the no-
tion of cut-size does not capture the essence of our ‘defi-
nition’ of network as a tendency for nodes to divide into
modules with dense connections between the members of
module and sparser connections between modules. Ac-
cording to Newman, a good division is not necessarily
one, in which there are few edges between the modules,
it is one where there are fewer edges than expected. The
fact that modules in complex networks can have heteroge-
neous structures was recently demonstrated quantitatively
by Guimerá et al. [12]. There are other problems with R:
If we set the community sizes free, minimizing R will tend
to favor small communities, thus the use of R forces us to
decide on and set the sizes of the communities in advance.

As a solution to these problems, Girvan and Newman
propose the modularity Q of a network [1], defined as

Q =
1

2m

∑
ij

[Aij − Pij ]δ(ci, cj). (3)

The Pij , here, are a null model, designed to encapsulate
the ‘more edges than expected’ part of the intuitive net-
work definition. It denotes the probability that a link ex-
ists between node i and j. Thus, if we know nothing about
the graph, an obvious choice would be to set Pij = p,
where p is some constant probability. However, we know
that the degree distributions of real networks are often far
from random, therefore the choice of Pij ∼ kikj is sensible;
this model implies that the probability of a link existing
between two nodes is proportional to the degree of the two
nodes in question. We will make exclusive use of this null
model in the following; the properly normalized version is
Pij = (kikj)/(2m). It is axiomatically demanded that that
Q = 0 when all nodes are placed in one single community.
This constrains the Pij such that

∑
ij

Pij = 2m, (4)

we also note that P = (P)T , which follows from the sym-
metry of A.

We can formulate optimization of Q as a matrix prob-
lem. We define a matrix, called the modularity matrix
B = A − P and an (n × C) community matrix S. Each
column of S corresponds to a community of the graph and
each row corresponds to a node, such that the elements

Sic =
{

1, if node i belongs to community c;
0 otherwise. (5)

Since each node can only belong to one community, the
columns of S are orthogonal and Tr(STS) = n. The δ-

symbol in equation (3) can be expressed as

δ(ci, cj) =
C∑

k=1

SikSjk, (6)

which allows us to express the modularity compactly as

Q =
1

2m

n∑
i,j=1

C∑
k=1

BijSikSjk =
Tr(ST BS)

2m
. (7)

This is the quantity that we wish to maximize.
Note that the structure of B allows for much faster

calculation than one might naively expect [11]. We can
write the product of B and a vector v as

Bv = Av − k(kT v)
2m

. (8)

This way the multiplication is divided into (i) sparse
matrix product with the adjacency matrix that takes
O(m+n), and (ii) the inner product kT v that takes O(n).
Thus the entire product Bv scales like O(m + n).

The question of finding the optimal Q is a discrete
optimization problem. We can estimate the size of the
space we must search to find the maximum. The number
of ways to divide n vertices into C non-empty sets (com-
munities) is given by the Stirling number of the second
kind S

(C)
n [13]. Since we do not know the number of com-

munities that will maximize Q before we begin dividing
the network, we need to examine a total of

∑n
C=2 S

(C)
n

community divisions [14]. Even for small networks, this is
an enormous space, which renders exhaustive search out
of the question. Therefore all optimization of Q in real
world networks must rely on approximate methods.

There are serious criticisms of the choice of Q as a
sensible objective function for finding communities in the
first place. Criticism has been raised by Fortunato and
Barthélemy [15] who point out that the Q measure has
a resolution limit. This stems from the fact that the null
model Pij ∼ kikj can be misleading. In a large network,
the expected number of links between two small modules
is small and thus, a single link between two such mod-
ules is enough to join them into a single community. A
variation of the same criticism has been raised by Rosvall
and Bergstrom [16]. These authors point out that the nor-
malization of Pij by the total number of links m has the
effect that if one adds a distinct (not connected to the re-
maining network) module to the network being analyzed
and partition the whole network again allowing for an ad-
ditional module, the division of the original modules can
shift substantially due to the increase of m.

In spite of these problems, the modularity is a highly
interesting method for detecting communities in complex
networks when we keep in mind the limitations pointed
out above. What makes the modularity particularly in-
teresting is the fact that it estimates the optimal number
of communities for a given network. Classical clustering
methods, such as K-means clustering [17] and spectral
clustering [18,19] do not possess this ability and has a
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maximum value of their objective function, when the net-
work is divided into C = n communities. The modularity
Q has a maximum value at C � n because of the Pij/(2m)
term; thus, the ability to estimate the number of commu-
nities is closely related to the conceptual problems with Q
mentioned in the previous paragraph—this relationship is
an interesting subject for further study.

3 Mean field optimization

Simulated annealing was proposed by Kirkpatrick
et al. [20] who noted the conceptual similarity between
global optimization and finding the ground state of a phys-
ical system. Formally, simulated annealing is a stochastic
method that maps the global optimization problem onto
a physical system by identifying the cost function with
the energy function and by considering this system to be
in equilibrium with a heat bath of a given temperature
T . By annealing, i.e., slowly lowering the temperature of
the heat bath, the probability of the ground state of the
physical system grows towards unity. This is contingent on
whether or not the temperature can be decreased slowly
enough such that the system stays in equilibrium, i.e., that
the probability is Gibbsian

P (S|T ) =
1
Z

exp
(

1
T

Q(S)
)

=
1
Z

exp
(

Tr(ST BS)
2mT

)
.

(9)
Here, Z is a constant ensuring proper normalization. Kirk-
patrick et al. realized the annealing process by Monte
Carlo sampling. The representation of the constrained
modularity optimization problem is equivalent to a C-
state Potts model. In the context of complex networks,
simulated annealing was first suggested by [21,22], later
work includes Reichardt and Bornholdt, see e.g., [23].

Mean field annealing is a deterministic alternative to
Monte Carlo sampling for combinatorial optimization and
has been pioneered by Peterson et al. [24,25]. Mean field
annealing avoids extensive stochastic simulation and equi-
libration, which makes the method particularly well suited
for optimization. There is a close connection between
Gibbs sampling and MF annealing. In Gibbs sampling,
every variable is updated by random draw of a Potts state
with a conditional distribution,

P (Si1, ..., SiC |S{−i}, T ) =
P (S|T )∑

Si1,...,SiC
P (S|T )

, (10)

where the sum runs over the C values of the i’th Potts
variable and S{−i} denotes the set of Potts variables ex-
cluding the i’th node. As noted by [23], Eq. (10) is local
in the sense that the part of the energy function contain-
ing variables not connected with the i’th variable cancels
out in the fraction. The mean field approximation is ob-
tained by computing the conditional mean of the set of
variables coding for the i’th Potts variable using equa-
tion (10) and approximating the Potts variables in the
conditional probability by their means [25]. This leads to

a simple self-consistent set of non-linear equations for the
means,

µik =
exp(φik/T )∑C

k′=1 exp(φik′/T )
, φik =

∑
j

Bij

2m
µjk. (11)

For symmetric connectivity matrices with
∑

j Bij = 0,
the set of mean field equations has the unique high-
temperature solution µik = 1/C. This solution becomes
unstable at the mean field critical temperature, Tc =
bmax/C, determined by the maximal eigenvalue bmax of
B.

In addition to being deterministic, the mean field al-
gorithm is fast. Each synchronous iteration (see Sect. 5
for details on implementation) requires a multiplication
of B by the mean vector µ. As we have seen, this opera-
tion can be performed in O(m+n) time using the trick in
equation (8). In these experiments, we have used a fixed
number of iterations of the order of O(n), which gives us
a total of O((m + n)n).

The most popular deterministic method in the liter-
ature was suggested by Newman [11,7] and consists of
a combination of a spectral approach and Kernighan-
Lin type optimization; we call this optimization scheme
the ‘KLN-algorithm’. Spectral optimization and the KLN-
algorithm both have a complexity of O(m(m + n)). We
note that the KLN-algorithm suffers from one important
drawback: Due to intrinsic problems with spectral meth-
ods, Newman uses repeated bisection of the network to
determine the communities. However, repeated bisection
procedure offers no guarantee, for example, that that the
best division into three groups can be arrived at by finding
by first determining the best division into two and then
dividing one of those two again. In fact, it is straight for-
ward to construct examples where a sub-optimal division
into communities is obtained when using repeated network
bisection [7,23].

4 A simple network

We will perform our numerical experiments on a simple
model of networks with communities. This model network
consists of C communities with nc nodes in each, the total
network has n = ncC nodes. Without loss of generality,
we can arrange our nodes according to their community;
a sketch of this type of network is displayed in Figure 1.
Communities are defined as standard random networks,
where the probability of a link between two nodes is given
by p, with 0 < p ≤ 1. Between the communities the prob-
ability of a link between is given by some fraction f of p
with 0 ≤ f ≤ 1. For such a network, Q is given by

Q(C, f) =
1

1 + (C − 1)f
− 1

C
, (12)

which is independent of p. Thus, for this simple network,
the only two relevant parameters are the number of com-
munities and the density of the inter-community links rel-
ative to the intra-community strength.
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Fig. 1. A sketch of the simple network model. The figure dis-
plays the structure of the adjacency matrix with nodes ar-
ranged according to community. Inside each community (the
blocks) along the diagonal, the probability of a link between
two nodes is p and between communities, the probability of a
link is q.
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Fig. 2. Equation (12) and Qdesign. This figure displays Q as a
function of f (the relative probability of a link between commu-
nities), with C = 5 for the simple network defined in Figure 1.
The solid line is given by equation (12) and the black dots with
error-bars are mean values of Qdesign in realizations of the sim-
ple network with p = 1/10 and n = 500; each data-point is
the mean of 100 realizations. The error bars are calculated as
the standard deviation divided by square root of the number
of runs.

If we design an adjacency matrix according to Figure 1,
we can calculate the value Qdesign = Tr(ST

d BSd)/(2m),
where Sd is a community-matrix that reflects the designed
communities. Values of Qdesign should correspond to equa-
tion (12). We see in Figure 2 that this expectation is in-
deed fulfilled. The solid curve is Q as a function of f with
C = 5. The black dots with error-bars are mean values of
Qdesign in realizations of the simple network with p = 1/10
and n = 500; each data-point is the mean of 100 realiza-
tions and the error bars are calculated as the standard
deviation divided by square root of the number of runs.
The correspondence between prediction and experiment is
quite compelling.

We note that the value of Qdesign can be lower than
the actual modularity found for the network by a good
algorithm: We can imagine that fluctuations of the inter-
community links could result in configurations that would
yield higher values of Q. This is always the case when
f ≥ 0.3. We can quantify this quite precisely. Reichardt
and Bornholdt [23] have demonstrated that random net-
works can display significantly larger values of Q due to
fluctuations; when f = 1, our simple network is precisely
a random network (see also related work by Guimerà et
al. [21]). In the case of the network we are experimenting
on, (n = 500, p = 1/10), they predict Q ≈ 0.13.

Thus, we expect that the curve for Q(f, C) with fixed
C will be deviate from the Qdesign displayed in Figure 2;
especially for values of f that are close to unity. The line
will decrease monotonically from Q(0, C) = 1 − 1/C to-
wards Q(1, C) = 0.11 with the difference becoming maxi-
mal as f → 1.

5 Numerical experiments

In this section we wish to compare the known determinis-
tic methods for optimization of the modularity. We know
that the running time of mean field method scales like that
of the spectral solution. In order to compare the precision
of the mean field solutions to the solutions stemming from
spectral optimization, we have created a number of test
networks with adjacency matrices designed according to
Figure 1. We have created 100 test networks using param-
eters nc = 100, C = 5, p = 0.1 and f ∈ [0, 1]. Varying f
over this interval allows us to interpolate between a model
with C disjunct communities and a random network with
no community structure.

We applied the following three algorithms to our test
networks

1. Spectral optimization,
2. Spectral optimization and the KLN-algorithm, and
3. Mean field optimization.

Spectral optimization and the KLN-algorithm were im-
plemented as prescribed in [11]. The nC non-linear mean
field annealing equations were solved approximately us-
ing a D = 300-step annealing schedule linear in β = 1/T
starting at βc and ending in 3βc at which temperature
the majority of the mean field variables are saturated.
The mean field critical temperature Tc = bmax/C is de-
termined for each connectivity matrix. The synchronous
update scheme defined as parallel update of all means at
each of the D temperatures

µ
(d+1)
ik =

exp(φ(d)
ik /T )∑C

k′=1 exp(φ(d)
ik′ /T )

φ
(d)
ik =

∑
j

Bij

2m
µ

(d)
jk (13)

can grow unstable at low temperatures. A slightly more
effective and stable update scheme is obtained by select-
ing random fractions ρ < 1 of the means for update in
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Fig. 3. Comparing spectral methods with the mean field solu-
tion. The networks were created according to the simple model,
using parameters nc = 100, C = 5, p = 0.1 and f ∈ [0, 1]. All
data points display the point-wise differences between the value
of Qalgorithm found by the algorithm in question and Qdesign.
The error-bars are calculated as in Figure 2. The dash-dotted
red line shows the results for the spectral method. The dashed
blue line shows the results for the spectral optimization fol-
lowed by KLN post-processing. The solid black curve shows
the results for the mean field optimization. The grey, horizon-
tal line corresponds to the theoretical prediction (Eq. (12)) for
the designed communities.

1/ρ steps at each temperature. We use ρ = 0.2 in the ex-
periments reported below. A final T = 0 iteration, equiva-
lent to making a decision on the node community assign-
ment, completes the procedure. We do not assume that
actual the number of communities C < Cmax is known
in advance. In these experiments we use Cmax = 8. This
number is determined after convergence by counting the
number of non-empty communities

The results of the numerical runs are displayed in Fig-
ure 3. This figure shows the point-wise differences between
the value of Qalgorithm found by the algorithm in question
and Qdesign plotted as a function of the inter-community
noise f . The line of Qalgorithm − Qdesign = 0 thus corre-
sponds to the curve plotted in Figure 2. We see from Fig-
ure 3 that the mean field approach uniformly out-performs
both spectral optimization and spectral optimization with
KLN post-processing. We also ran a Gibbs sampler [23] for
with a computational complexity equivalent to the mean
field approach. This lead to communities with Q slightly
lower than the mean field results, but still better than
spectral optimization with KLN post-processing.

We note that the obtained Qalgorithm for a random net-
work (f = 1) is consistent with the prediction made by
Reichardt and Bornholdt [23]. We also see that the op-
timization algorithms can exploit random connections to
find higher values of Qalgorithm than expected for the de-
signed communities Qdesign. In the case of the mean field
algorithm this effect is visible for values of f as low as 0.2.

Figure 4 shows the median number of communities
found by the various algorithms as a function of f . It is ev-
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Fig. 4. The median number of communities found by the
various algorithms. The panel shows the median number of
communities as a function of the relative fraction of inter-
community links f . All optimization schemes consistently pick
four or five communities for the highest values of f . This find-
ing is consistent with theoretical and experimental results by
Reichardt and Bornholdt [23]. Note that the fact that 5 com-
munities are detected does not imply that the communities
detected correspond to the designed communities. In fact, for
f ≥ 0.3, they do not.

ident from Figures 3 and 4 that around f = 0.3 — for this
particular set of parameters — the distribution of nodes
into communities that maximizes Q is no longer identical
to the designed community structure. Spectral clustering
with and without the KLN algorithm find values Qalgorithm

that are significantly lower than Qdesigm. The mean field
algorithm manages to find a value of Qalgorithm that is
higher than the designed Q but does so by creating ex-
tra communities. As f → 1 it becomes more and more
difficult to recover the designed number of communities.

6 Discussion and conclusions

We have introduced a deterministic mean field annealing
approach to optimization of modularity Q. We have evalu-
ated the performance of the new algorithm within a family
of networks with variable levels of inter-community links,
f . Even with a rather costly post-processing approach,
the spectral clustering approach suggested by Newman is
consistently out-performed by the mean field approach for
higher noise levels. Spectral clustering without the KLN
post-processing finds much lower values of Q for all f > 0.

Speed is not the only benefit of the mean field ap-
proach. Another advantage is that the implementation of
mean field annealing is rather simple and similar to Gibbs
sampling. Careful Gibbs sampling and annealing will lead
to solutions with higher modularity than those obtained
by the mean field method, however, for shorter simulations
the mean field method can be more efficient, because of
it avoids time consuming equilibration. Careful compar-
ison requires optimization of annealing schedules and is
beyond the scope of the present communication.
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Fig. 5. Comparison of the modularity performance for mean
field annealing, Gibbs sampling, and a ‘greedy’ optimizer. The
greedy algorithm corresponds to Gibbs sampling at T = 0.
The graph describes the co-authorship network of the Los
Alamos condensed matter preprint archive, considering arti-
cles published between April 1998 and February 2004 [26],
it has n = 30 561 nodes, and m = 125 959 links. The mean
field method provides good modularity solutions for very few
iterations, for the present graph the Gibbs sampling scheme
outperforms mean field annealing at 150 iterations. The best
modularity solutions we found in this network after extensive
Gibbs sampling have Q ≡ 0.71. The zero temperature greedy
search does not produce useful modularity solutions here.

In Figure 5 we give an example of the relative perfor-
mances of mean field annealing, Gibbs sampling, and a
‘greedy’ algorithm, for co-authorship network of the Los
Alamos condensed matter preprint archive, considering ar-
ticles published between April 1998 and February 2004
[26]; this graph is rather large, with n = 30 561 nodes,
and m = 125 959 links. The co-authorship graph was also
studied in [27,23].

In this example we set C = 30. The greedy algorithm
performs a very local optimization corresponding to Gibbs
sampling at T = 0 and does not produce useful modular-
ity solutions in the given graph. The mean field method
produces high modularity solutions for very few iterations,
making it of high interest for time critical applications, for
example in on-line clustering for search engines.

As we have noted above, the modularity measure Q
may need modification in specific non-generic networks.
In that case, we note that the mean field method is quite
general and can be generalized to many other measures.
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12. R. Guimerá, M. Sales-Pardo, L.A.N. Amaral, Nature
Physics 3, 63 (2007)

13. Mathworld, http://mathworld.wolfram.com/
14. M.E.J. Newman, Phys. Rev. E 69, 066133 (2004)
15. S. Fortunato, M. Barthelemy, Resolution limit in com-

munity detection, Proceedings of the National Academy of
Sciences USA 104, 36 (2007)

16. M. Rosvall, C.T. Bergstrom, An information-theoretic
framework for resolving community structure in complex
networks, 2006

17. J.B. MacQueen, Some methods for classification and
analysis of multivariate observations, in Proceedings of
5th Berkeley Symposium on Mathematical Statistics and
Probability (University of California Press, Berkeley, 1967),
Vol. 1, p. 281

18. M. Fiedler, Czechoslovak Mathematical J. 23, 298 (1973)
19. A. Pothen, H. Simon, K.-P. Liou, SIAM J. Matrix Analysis

and Applications 11, 430 (1990)
20. S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Science 220,

671 (1983)
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